WHAT YOU NEED TO KNOW

\square Translations: $(x \pm a, y \pm b)$
\square Rotations about origin: $90^{\circ} \mathrm{CW} \rightarrow(y,-x), 90^{\circ} C C W \rightarrow(-y, x), 180^{\circ} \rightarrow(-x,-y), 270^{\circ} \rightarrow$ change to 90° in the OPPOSITE direction
\square Rotational Symmetry: $\frac{360^{\circ}}{\# \text { of identical sides }}$, order - \# of identical sides
\square Lines of Symmetry: \# of lines that cuts a figure exactly in half
\square Reflections: Over x-axis $\rightarrow(x,-y)$, over y-axis $\rightarrow(-x, y)$, over $y=x \rightarrow(y, x)$, over $y=-x \rightarrow(-y,-x)$, over any other line \rightarrow reflect the same distance in the opposite direction (HOY/VUX)
\square Writing rules from images (new) and pre-images (old)
Composition transformations (multiple): $A \rightarrow A^{\prime} \rightarrow A^{\prime \prime} \rightarrow A^{\prime \prime \prime}$

Practice Problems

1) A regular pentagon is centered about the origin and has a vertex at $(0,4)$. Which transformation maps the pentagon to itself?

A. a reflection across line m
B. a reflection across the x-axis
C. a clockwise rotation of 100° about the origin
D. a clockwise rotation of 144° about the origin
2) What is the rule that describes the translation QRST $\rightarrow Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$?

A. $(x, y) \rightarrow(x-6, y+2)$
B. $(x, y) \rightarrow(x+2, y-6)$
C. $(x, y) \rightarrow(x-2, y+6)$
D. $(x, y) \rightarrow(x+6, y-2)$
3) A parallelogram has vertices at $(0,0),(0,6),(4,4)$, and $(4,-2)$. Which transformation maps the parallelogram to itself?

A. a reflection across the line $x=2$
B. a reflection across the line $y=2$
C. a rotation of 180° about the point $(2,2)$
D. a rotation of 180° about the point $(0,0)$
4) Look at quadrilateral QRST.

What is the image point R after a clockwise rotation of 270 degrees about the origin?
A. $(6,-3)$
B. $(-3,6)$
C. $(-6,3)$
D. $(3,-6)$
4) If triangle $X Y Z$ is rotated 90° clockwise about the origin to form triangle $X^{\prime} Y^{\prime} Z^{\prime}$, what are the coordinates of Y^{\prime} ?

A. $(2,-3)$
B. $(-2,3)$
C. $(-2,-3)$
D. $(-3,-2)$
6) Which sequence of transformations maps $\triangle A B C$ to $\triangle R S T$?

A. Reflect $\triangle A B C$ across the line $x=-1$. Then translate the result 1 unit down.
B. Reflect $\triangle A B C$ across the line $\mathrm{x}=-1$. Then translate the result 5 units down.
C. Translate $\triangle A B C 6$ units to the right. Then rotate the result 90° clockwise about the point $(1,1)$.
D. Translate $\triangle A B C 6$ units to the right. Then rotate the result 90° counterclockwise about the point $(1,1)$.
7) Parallelogram FGHJ was translated 3 units down to form parallelogram $F^{\prime} G^{\prime} H^{\prime} J^{\prime}$. Parallelogram $F^{\prime} G^{\prime} H^{\prime} J^{\prime}$ was then rotated 90° counterclockwise about point G^{\prime} to obtain parallelogram $\mathrm{F}^{\prime \prime} \mathrm{G}^{\prime \prime} \mathrm{H}^{\prime \prime} \mathrm{J}^{\prime \prime}$.

Which statement is true about parallelogram FGHJ and parallelogram $\mathrm{F}^{\prime \prime} \mathrm{G}^{\prime \prime} \mathrm{H}^{\prime \prime} \mathrm{J}^{\prime \prime}$?
A. The figures are both similar and congruent.
B. The figures are neither similar nor congruent.
C. The figures are similar but not congruent.
D. The figures are congruent but not similar.

CONSTRUCTED RESPONSE

Rectangle WXYZ has coordinates $\mathrm{W}(1,2), \mathrm{X}(3,2), \mathrm{Y}(3,-3)$, and Z(1, -3)
a. What would the coordinates be of $W^{\prime} X^{\prime} Y^{\prime} Z$ after a rotation of 90° clockwise about the origin?
b. What would the coordinates be of $W^{\prime \prime} X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$ after a translation 2 units left and 3 units up?
c. Is rectangle WXYZ congruent to rectangle $W^{\prime \prime} X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$? Explain.

Unit 2A: Properties of Angles, Triangles, and Quadrilaterals

WHAT YOU NEED TO KNOW

\square Angle Relationships: Adjacent angles (angles that share a middle ray), supplementary anqles (linear pair makes a straight line $=180^{\circ}$), complementary angles (makes a corner $=90^{\circ}$), vertical angles (across from each other \cong congruent)
Angle Addition Postulate: (big angle = the sum of the two smaller angles)
Angle Bisector: (small angle $=1 / 2$ big angle)
Distance Formula: $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ or Pythagorean Theorem method
Interior Sum Theorem of Triangles (= 180°)
Isosceles Triangle Characteristics: (base angles across from the legs are §)
Exterior Sum Theorem of Triangles (outside angle $=$ sum of 2 non-adjacent interior angles)
Parallel Lines cut by Transversal: Alternate angles (BOTH inside or outside and "jumps" over the transversal; \cong), same-side (BOTH inside or outside and does NOT "jump" over the transversal; also called consecutive angles; $=180^{\circ}$), corresponding angles (SAME LOCATION; \cong)
\square Parallelogram Properties: Parallelogram (opposite sides are parallel and congruent; diagonals bisect each other), Rectangle (diagonals are congruent and all corner angles are 90°), Rhombus (all sides are congruent, diagonals are perpendicular and bisect opposite angles), Square (all parallelogram, rectangle, and rhombus properties)
\square Proving Types of Triangles: Distance $\left(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right.$ or Pythagorean Theorem method $) \rightarrow$ Prove sides, slope $\frac{\text { rise }}{\text { run }}$ or $\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \rightarrow$ Prove perpendicular lines
\square Proving Types of Parallelograms: Distance \rightarrow Prove sides and diagonals, slope \rightarrow Prove parallel sides and perpendicular sides/diagonals
9) What is the value of x ?

A. 33
B. 75
C. 147
D. 162

Practice Problems

10) In the figure below, $\mathrm{p} \| \mathrm{q}$.

Which of these statements is NOT true?
A. $m \angle 1=m \angle 4$
B. $m \angle 6=m \angle 2$
C. $m \angle 6+m \angle 3=180^{\circ}$
D. $m \angle 2+m \angle 5=180^{\circ}$
11) Lines s and t are parallel and r is a transversal.

Which angles are congruent to $\angle 4$?
A. $\angle 2, \angle 5, \angle 8$
B. $\angle 3, \angle 5, \angle 7$
C. $\angle 2, \angle 6, \angle 8$
D. $\angle 3, \angle 7, \angle 8$
13) In the drawing, line p is parallel to line j and line t is perpendicular to $\overrightarrow{A B}$.

What is the measure of $\angle B A C$?
A. 37°
B. 53°
C. 90°
D. 127°
12) In the drawing below, line h is parallel to line k.

What is the value of y ?
A. 135
B. 15
C. 35
D. 145
14) Which information is needed to show that a parallelogram is a rectangle?
A. The diagonals bisect each other.
B. The diagonals are congruent.
C. The diagonals are congruent and perpendicular.
D. The diagonals bisect each other and are perpendicular.
15) Look at quadrilateral ABCD.

Which information is needed to show that quadrilateral $A B C D$ is a parallelogram?
A. Use the distance formula to show that diagonals AC and $B D$ have the same length.
B. Use the slope formula to show that segments $A B$ and $C D$ are perpendicular and segments $A D$ and $B C$ are perpendicular.
C. Use the slope formula to show that segments $A B$ and $C D$ have the same slope and segments $A D$ and $B C$ have the same slope.
D. Use the distance formula to show that segments $A B$ and $A D$ have the same length and segments $C D$ and $B C$ have the same length.
17) Which of the following would be enough information to prove that quadrilateral QRST is a parallelogram?

A. $\overline{Q R} \cong \overline{S T}$
C. $\overline{Q P} \cong \overline{P S}$ and $\overline{T P} \cong \overline{P R}$
B. $\overline{Q R} \| \overline{S T}$
D. Two pairs of sides are congruent.
16) What proves that figure $A B C D$ is a parallelogram?

A. Diagonal $B D$ bisects angle $A B C$.
B. Side $A B$ is equal to diagonal $A C$.
C. Diagonal BD bisects diagonal AC.
D. Diagonal $B D$ is greater than diagonal $A C$.
18) Quadrilateral RSTU has vertices $R(-6,-3), S(3,3)$, and $T(4,-1)$. What are the coordinates of vertex U if RSTU is a parallelogram?
A. $(-5,-6)$
B. $(-5,-7)$
C. $(-6,-7)$
D. $(-6,3)$

19) A community is building a square park with sides that measure 120 meters. To separate the picnic area from the play area, the park is split by a diagonal line from opposite corners. Determine the approximate length of the diagonal line that splits the square. If necessary, round your answer to the nearest meter.

A. 28,800 meters
B. 170 meters
C. 240 meters
D. 120 meters
21) $A B C D$ is a rhombus. How do you complete the explanation that states why $\triangle A B C \cong \triangle C D A$?

$\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$ by the definition of a rhombus. $\overline{A C} \cong$ $\overline{A C}$ by the Reflexive Property of Congruence, so $\triangle A B C \cong$ $\triangle C D A$ by \qquad -.
A. ASA
B. AAS
C. SAS
D. SSS
20) Parallelogram $A B C D$ has vertices as shown.

Which equation would be used in proving that the diagonals of parallelogram ABCD bisect each other?
A. $\sqrt{(3-1)^{2}+(2-0)^{2}}=\sqrt{(1-3)^{2}+(0+4)^{2}}$
B. $\sqrt{(3+1)^{2}+(2+0)^{2}}=\sqrt{(1+3)^{2}+(0+4)^{2}}$
C. $\sqrt{(-1-1)^{2}+(4-0)^{2}}=\sqrt{(1-3)^{2}+(0+4)^{2}}$
D. $\sqrt{(-1+1)^{2}+(4+0)^{2}}=\sqrt{(1+3)^{2}+(0-4)^{2}}$
22) Which set of statements would not be used to complete the proof?

Given: $\overline{A D} \cong \overline{C D} ; \overline{B D} \perp \overline{A D}$
Proof: $\angle A \cong \angle C$

A. $\triangle A B D \cong \triangle C B D$ by HL Congruence
B. $\angle A \cong \angle C$ by СРСТС
C. $\angle A D B$ and $\angle C D B$ are right angles since perpendicular lines form right angles
D. $\overline{B D} \cong \overline{B D}$ by the Reflexive Property

Unit 2B: Congruence

WHAT YOU NEED TO KNOW

$\square \quad$ Triangle Congruence: SSS, SAS, ASA, AAS, HL
$\square \quad$ Congruent Figures: Corresponding Parts, naming in the same order with a congruency statement
\square CPCTC: ONLY AFTER TWO TRIANGLES ARE PROVED CONGRUENT
\square Proofs: Statements and Reasons; build off your givens. Remember, they won't mark shared sides or vertical angles!
23) Consider the triangles shown.

Which can be used to prove the triangles are congruent?
A. SSS
B. ASA
C. SAS
D. AAS
25) If $\triangle D N P \cong \triangle H K F$, which of the following is NOT true?
A. $\overline{N P} \cong \overline{K F}$
B. $\overline{D P} \cong \overline{H F}$
C. $\angle D \cong \angle H$
D. $\angle P \cong \angle K$

Practice Problems
24) Rita is creating an abstract design that includes the figure below.

She knows that $\angle P Q R \cong \angle T S R$. What additional information would she need to prove that $\triangle P Q R \cong \triangle T S R$ using ASA?
A. $\angle Q P R \cong \angle S R T$
B. $\overline{Q P} \cong \overline{S T}$
C. $\overline{P R} \cong \overline{T R}$
D. $\overline{Q R} \cong \overline{S R}$
26) In the proof below, what is the missing reason?

Given: $A B C D$ is a kite
Prove: $\angle B \cong \angle D$

Statement	Reason
1. $\overline{A B} \cong \overline{A D}$ and $\overline{B C} \cong \overline{C D}$	1. Definition of kite
2. $\overline{A C} \cong \overline{A C}$	2. Reflexive Property of equality
3. $\triangle A B C \cong \triangle A D C$	3. SSS
4. $\angle B \cong \angle D$	4.?

A. SAS
B. SSS
C. CPCTC
D. AAS
27) In the diagram, $\overline{C D}$ is the perpendicular bisector of $\overline{A B}$. The twocolumn proof shows that $\overline{A C}$ is congruent to $\overline{B C}$.

Step	Statement	Justification
1	$\overline{C D}$ is the perpendicular bisector of $\overline{A B}$.	Given
2	$\overline{A D} \cong \overline{B D}$	Definition of bisector
3	$\overline{C D} \cong \overline{C D}$	Reflexive Property of Congruence
4	$\angle A D C$ and $\angle B D C$ are right angles.	Definition of perpendicular lines
5	$\angle A D C \cong \angle B D C$	All right angles are congruent.
6	$\triangle A D C \cong \triangle B D C$	
7	$\overline{A C} \cong \overline{B C}$	CPCTC

Which of the following would justify Step 6?
A. AAS
B. ASA
C. SAS
D. SSS
30) In this diagram, $\overline{D E} \cong \overline{J I}$ and $\angle D \cong \angle J$.

Which additional information is sufficient to prove $\triangle D E F$ is congruent to $\Delta J I H$?
A. $\overline{E D} \cong \overline{I H}$
B. $\overline{H G} \cong \overline{G I}$
C. $\overline{D H} \cong \overline{J F}$
D. $\overline{H F} \cong \overline{J F}$
28) What other information is needed in order to prove the triangles congruent using the SAS Congruence Postulate?

A. $\angle B A C \cong \angle D A C$
B. $\overline{A C} \perp \overline{B D}$
C. $\overline{A B} \| \overline{A D}$
D. $\overline{A C} \cong \overline{B D}$
29) In this diagram, STU is an isosceles triangle where $\overline{S T}$ is congruent to $\overline{U T}$. The paragraph proof shows that $\angle S$ is congruent to $\angle U$.

It is given that $\overline{S T}$ is congruent to $\overline{U T}$. Draw $\overline{T V}$ such that V is on $\overline{S U}$ and $\overline{T V}$ bisects $\angle T$. By the definition of an angle bisector, $\angle S T V$ is congruent to $\angle U T V$. By the Reflexive Property of Congruence, $T V$ is congruent to $T V$. Triangle $S T V$ is congruent to triangle $U T V$ by SAS. $\angle S$ is congruent to $\angle U$ by \qquad -.

Which step is missing in the proof?
A. CPCTC
B. Reflexive Property of Congruence
C. Definition of right angles
D. Angle Congruence Postulate

WHAT YOU NEED TO KNOW

Scale Factor/Dilation: $\frac{A^{\prime} \text { (new) }}{A \text { (old) }}$, center of dilation (connect image and pre-image coordinates to form an intersection)
Relationship with Scale Factor: area $=$ scale factor 2 and perimeter $=$ scale factor
Triangle Proportionality Theorem: When two lines are parallel; $\frac{t o p}{\text { bottom }}=\frac{\text { top }}{\text { bottom }}$ OR $\frac{l e f t}{\text { right }}=\frac{l e f t}{\text { rig }}$
Similar Figures: Angles \rightarrow congruent, sides \rightarrow proportional (same scale factor)
Triangle Similarity: SSS Similarity, AA Similarity, SAS Similarity
Word Problems using similarity: Shadows, ladders, enlarging/shrinking images

Practice Problems

31) What transformation results in a figure that is similar to the original figure but has a greater area?
A. a dilation of $\triangle Q R S$ by a scale factor of 0.25
B. a dilation of $\triangle Q R S$ by a scale factor of 0.5
C. a dilation of $\triangle Q R S$ by a scale factor of 1
D. a dilation of $\triangle Q R S$ by a scale factor of 2
32) Given: $\overline{A B} \| \overline{D E}$. Which can be used to prove $\triangle A B C \sim \triangle E D C$?

A. AA Similarity Postulate
B. SSS Similarity Theorem
C. ASA Similarity Theorem
D. SAS Similarity Theorem
33) In the triangle shown, $\overline{G H} \| \overline{D F}$.

What is the length of $\overline{G E}$?
A. 2.0
B. 4.5
C. 7.5
D. 8.0
34) Given: $\angle B \cong \angle D$. Which of the following conjectures can NOT be made based on the diagram and the given information?

A. $\overline{A B} \| \overline{C D}$
B. $\triangle A X B \sim \triangle C X D$
C. $\overline{B D} \perp \overline{A C}$
D. $\angle A \cong \angle C$
35) In the triangles shown, $\triangle A B C$ is dilated by a factor of $\frac{2}{3}$ to form $\triangle X Y Z$.

Given that $m \angle A=50^{\circ}$ and $m \angle B=100^{\circ}$, what is $m \angle Z$?
A. 15°
B. 25°
C. 30°
D. 50°
37) Figure $A^{\prime} B^{\prime} C^{\prime} D^{\prime} F^{\prime}$ is a dilation of figure $A B C D F$ by a scale factor of $\frac{1}{2}$. The dilation is centered at $(-4,-1)$.

Which statement is true?
A. $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B^{\prime} C^{\prime}}{B C}$
B. $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}$
C. $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{D^{\prime} F^{\prime}}$
D. $\frac{A B}{A^{\prime} B^{\prime}}=\frac{D \prime F \prime}{B C}$
36) A landowner wants to find the distance d across a pond. The two overlapping right triangles shown are similar. Using the measurements shown, what is d?

A. 36 meters
B. 76 meters
C. 96 meters
D. 124 meters
38) Which transformation on quadrilateral ABCD produces an image that does not preserve distance between points in quadrilateral ABCD?
A. reflection across $y=x$
B. translation 3 units down and 4 units to the right
C. dilation by a scale factor of 2
D. rotation of 270 degrees.
39) Helena creates similar rectangles using exactly 100 cm of string. The smaller rectangle is 4 cm by 6 cm . What are the dimensions of the larger rectangle?
A. 18 cm by 22 cm
B. 20 cm by 30 cm
C. 16 cm by 24 cm
D. 36 cm by 54 cm
40) A bell tower is 17 meters tall. It casts a long shadow on the ground below. The tip of the shadow of the bell tower is 51 meters from the base of the bell tower. At the same time, a tall elm tree casts a shadow that is 63 meters long. If the right triangle formed by the tower and its shadow is similar to the right triangle formed by the elm and its shadow, how tall is the elm to the nearest tenth?
41) In triangle $A B C, \overline{P Q}$ is parallel to $\overline{B C}$. What is the length of $\overline{P B}$, in centimeters?

A. 10 cm
B. 12 cm
C. 20 cm
D. 30 cm
42) This is a proof of the statement "If a line is parallel to one side of a triangle and intersects the other two sides at distinct points, then it separates these sides into segments of proportional lengths."

Step	Statement	Reason
1	$\overline{G K}$ is parallel to $\overline{H J .}$	Given
2	$\angle I G K \cong \angle I H J$ $\angle I K G \cong \angle I J H$	$?$
3	$\triangle G I K \sim \triangle H I J$	AA Similarity
4	$\frac{I G}{I H}=\frac{I K}{I J}$	Corresponding sides of similar triangles are proportional.
5	$\frac{H G+I H}{I H}=\frac{J K+I J}{I J}$	Segment Addition Postulate
6	$\frac{H G}{I H}=\frac{J K}{I J}$	Subtraction Property of Equality

Which reason justifies Step 2?
A. Alternate interior angles are congruent
B. Alternate exterior angles are congruent
C. Corresponding angles are congruent.
D. Vertical angles are congruent.
43) Look at the triangle.

Which triangle is similar to the given triangle?
A.

c.

B.

D.

45) The smaller triangle is transformed to create the larger triangle. Which of these is the scale factor of the dilation centered at the point (0,0)?

A. 4
B. 2
C. 1
D. $\frac{1}{2}$
44) In the coordinate plane, segment $\overline{P Q}$ is the result of a dilation of segment $\overline{X Y}$ by a scale factor of $\frac{1}{2}$.

Which point is the center of dilation?
A. $(-4,0)$
B. $(0,-4)$
C. $(0,4)$
D. $(4,0)$
46)

Constructed Response

Figure $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a dilation of figure $A B C D$.

A. Determine the center of dilation.
B. Determine the scale factor of the dilation.
C. What is the relationship between the sides of the preimage and the corresponding sides of the image?

Unit 3: Right Triangle Trigonometry

WHAT YOU NEED TO KNOW

\square Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$ (c is the hypotenuse)
\square Trig Ratios: Sine $=\frac{o p p}{h y p} ; \underline{\text { cosine }}=\frac{a d j}{h y p} ;$ tangent $=\frac{o p p}{a d j}$
\square Co-Functions: $\sin (\theta)=\cos (90-\theta) ; \cos (\theta)=\sin (90-\theta) ; \tan (\theta)=\frac{1}{\tan (90-\theta)}$
\square Solving sides using trig ratios: Label all sides from the given angle (hypotenuse, opposite, adjacent) and circle the sides that have your important information and cross multiply
\square Solving angles with trig inverses $\left({ }^{-1}\right.$): Label all sides from the given angle (hypotenuse, opposite, adjacent) and circle the sides that have your important information and use the inverse
\square Angle of Elevation and Depression: Angle goes in the bottom of the triangle
Other Word Problems: Kites, ladders, etc.
\square Square and Equilateral Triangles: Diagonals and altitudes

Practice Problems

47) Triangle $A B C$ is given below.

What is the value of $\cos A$?
A. $\frac{3}{5}$
B. $\frac{3}{4}$
C. $\frac{4}{5}$
D. $\frac{5}{3}$
48) In triangle $A B C$, angle A and angle B are complementary angles. The value of $\cos A$ is $\frac{5}{13}$. What is the value of $\sin B$?
A. $\frac{5}{13}$
B. $\frac{12}{13}$
C. $\frac{13}{12}$
D. $\frac{13}{5}$
49) Which equation is true?
A. $\sin 40^{\circ}=\tan 50^{\circ}$
B. $\cos 40^{\circ}=\cos 50^{\circ}$
C. $\sin 40^{\circ}=\sin 50^{\circ}$
D. $\cos 40^{\circ}=\sin 50^{\circ}$
50) What is the approximate value of x in the diagram below?

A. 7.6 cm
B. 8.4 cm
C. 16.3 cm
D. 19.9 cm
52) In right triangle $H J K, \angle J$ is a right angle and $\tan \angle H=1$. Which statement about triangle HJK must be true?
A. $\sin \angle H=\frac{1}{2}$
B. $\sin \angle H=1$
C. $\sin \angle H=\cos \angle H$
D. $\sin \angle H=\frac{1}{\cos \angle H}$
51) At a certain time, a vertical pole 10 feet tall casts a 14 -foot shadow. What is the angle of elevation of the sun to the nearest degree?

14
A. 36°
B. 44°
C. 46°
D. 54°
53) A hot air balloon is 1,200 feet above the ground. The angle of depression from the basket to the base of a monument is 54°.

Which equation can be used to find the distance, d, in feet, from the basket of the hot air balloon to the base of the monument?
A. $\sin 54^{\circ}=\frac{d}{1200}$
B. $\sin 54^{\circ}=\frac{1200}{d}$
C. $\cos 54^{\circ}=\frac{d}{1200}$
D. $\cos 54^{\circ}=\frac{1200}{d}$
54) A 12 -foot ladder is leaning against a building at a 75° angle with the ground.

Which equation can be used to find how high the ladder reaches up the side of the building?
A. $\sin 75^{\circ}=\frac{12}{x}$
B. $\tan 75^{\circ}=\frac{12}{x}$
C. $\cos 75^{\circ}=\frac{x}{12}$
D. $\sin 75^{\circ}=\frac{x}{12}$

Jane and Mark each build ramps to jump their remote-controlled cars. Both ramps are right triangles when viewed from the side. The incline of Jane's ramp makes a 30-degree angle with the ground, and the length of the inclined ramp is 14 inches. The incline of Mark's ramp makes a 45-degree angle with the ground, and the length of the inclined ramp is 10 inches.

Part A: What is the horizontal length of the base of each ramp? Explain how you found your answers. Write your answers below.

Part B: Which car is launched from the highest point? Explain your reasoning. Write your answer below.
55) If $\Delta \mathrm{FGH} \sim \Delta \mathrm{KLM}$ which of the following must be TRUE?

A. $\tan \mathrm{G}=\tan \mathrm{L}$
B. $\tan G=\tan M$
C. $\sin H=\sin L$
D. $\sin H=\tan M$
57)

Constructed Response

Study the triangle.

What is sin x ? Explain how you determined your answer.

Unit 4A: Circle Angle Relationships and Theorems

WHAT YOU NEED TO KNOW

\square Circle Vocabulary
\square Angle Relationships:

- Central (vertex is in the center) \rightarrow equal to the arc measure
- 'ON' (vertex is on the edge circle) \rightarrow equal to $1 / 2$ the arc measure
- 'IN'(vertex is in the circle, but NOT in the center) $\rightarrow \frac{\text { big arc }+ \text { small arc }}{2}=$ angle
- 'OUT' (vertex is outside of the circle) $\rightarrow \frac{\text { big arc-small arc }}{2}=$ angle

Chord Theorems

\square Tangent Theorems: Radius and a tangent form a right angle; 2 tangents from the same point and go to the same circle are congruent

Practice Problems

58) Circle P is dilated to form circle P^{\prime}. Which statement is ALWAYS true?
A. The radius of circle P is equal to the radius of circle P^{\prime}.
B. The length of any chord in circle P is greater than the length of any chord in circle P^{\prime}.
C. The diameter of circle P is greater than the diameter of circle P^{\prime}.
D. The ratio of the diameter to the circumference is the same for both circles.
59) In the circle shown, $\overline{B C}$ is a diameter and $m \overparen{A B}=120^{\circ}$.

What is the measure of $\angle A B C$?
A. 15°
B. 30°
C. 60°
D. 120°
60) The figure shows Circle C with tangent lines $\overleftrightarrow{S R}$ and $\overleftrightarrow{Q R}$. The measure of $\angle Q C S$ is x^{0}. Select THREE statements that are true about the figure.
A. The measure of $\angle Q C S$ is $(90-x)^{\circ}$
B. The measure of $\angle Q P S$ is $\frac{1}{2} \mathrm{x}^{0}$
C. The measure of $\angle P S R$ is 90°
D. The measure of $\angle C Q R$ is 90°
E. The measure of $\angle Q R S$ is $(180-x)^{\circ}$

F . The measure of $\angle Q R S$ is $2 \mathrm{x}^{\circ}$

61) What is the measure of $\angle V X W$?

A. 120°
B. 63°
C. 60°
D. 57°
63) What is the measure of arc $A B$?

A. 40°
B. 100°
C. 110°
D. 140°
62) What is the value of x for $m \overparen{A B}=45^{\circ}$ and $m \overparen{C D}=42^{\circ}$?

A. 3
B. 43.5
C. 66
D 87
64) Points A, B, C, D, and E are located on the circle O, as shown in this figure.

The measure of $\overparen{C D}$ is 80°. What is the value of x ?
A. 50
B. 40
C. 35
D. 25
65)

Constructed Response

$\angle P N Q$ is inscribed in circle O and $m \overparen{P Q}=70^{\circ}$.

A. What is the measure of $\angle P O Q$?
B. What is the relationship between $\angle P O Q$ and $\angle P N Q$?
C. What is the measure of $\angle P N Q$?

In circle P below, $\overline{A B}$ is a diameter.

If $m \angle A P C=100^{\circ}$, find the following:
A. $m \angle B P C$
B. $m \angle B A C$
C. $m \overparen{B C}$
D. $m \overparen{A C}$

Unit 4B - Arc length/Sector Area

WHAT YOU NEED TO KNOW

\square Arc Length $\rightarrow \frac{\text { arc length }}{\text { circumference }(2 \pi r)}=\frac{\text { angle }(\theta)}{360^{\circ}}$ OR arc length $=\frac{2 \pi r \theta}{360}$
\square Sector Area $\rightarrow \frac{\text { sector area }}{\text { Area }\left(\pi r^{2}\right)}=\frac{\text { angle }(\theta)}{360^{\circ}}$ OR sector area $=\frac{\pi r^{2} \theta}{360}$

Practice Problems

67) Circle E is shown.

What is the length of $\overparen{C D}$?
A. $\frac{29}{72} \pi \mathrm{yd}$
B. $\frac{29}{6} \pi \mathrm{yd}$
C. $\frac{29}{3} \pi \mathrm{yd}$
D. $\frac{29}{2} \pi \mathrm{yd}$
69) A sprinkler rotates through 60°, watering a section of a field. The distance from the sprinkler to the farthest point reached is 3 meters. Approximately how many square meters of the field is watered?

A. 0.6 square meters
B. 0.8 square meters
C. 3.1 square meters
D. 4.7 square meters
68) Circle Y is shown.

What is the area of the shaded part of the circle?
A. $\frac{57}{4} \pi \mathrm{~cm}^{2}$
B. $\frac{135}{8} \pi \mathrm{~cm}^{2}$
C. $\frac{405}{8} \pi \mathrm{~cm}^{2}$
D. $\frac{513}{8} \pi \mathrm{~cm}^{2}$
70) An athlete is running along a circular path that has a diameter of 250 yards. The arc traveled by the athlete is 120°. Using 3.14 for π, how many yards did the athlete run? Round the answer to the nearest yard.

71) The spokes of a bicycle wheel form 10 congruent central angles. The diameter of the circle formed by the outer edge of the wheel is 18 inches.

What is the length, to the nearest 0.1 inch, of the outer edge of the wheel between two consecutive spokes?
A. 1.8 inches
B. 5.7 inches
C. 11.3 inches
D. 25.4 inches

Unit 4C - Volume

WHAT YOU NEED TO KNOW

\square Volume: Cavalieri's Principle, prisms $(B h \rightarrow(L W) h)$, pyramids $\left(\frac{1}{3} B h \rightarrow \frac{1}{3}(L W) h\right)$, cylinders $\left(\pi r^{2} h\right)$, cones $\left(\frac{1}{3} \pi r^{2} h\right)$, and spheres $\left(\frac{4}{3} \pi r^{3}\right)$
Composite Volume: Adding or multiplying multiple 3D figures
Geometric Modeling: Earth (sphere), human torso (cylinder), mountain (cone), bowl of cereal (hemisphere)
Population Density: $\frac{\text { population }}{\text { area }}$

Practice Problems

72) This is a hand drawing of a mountain. Explain which geometric shape could be used to estimate the total amount of Earth the mountain is made of.

A. Triangle
B. Cone
C. Pyramid
D. Rectangle
73) What is the volume of a cylinder with a radius of 3 in and a height of $\frac{9}{2}$ in?
A. $\frac{81}{2} \pi \mathrm{in}^{3}$
B. $\frac{27}{4} \pi \mathrm{in}^{3}$
C. $\frac{27}{8} \pi \mathrm{in}^{3}$
D. $\frac{9}{4} \pi \mathrm{in}^{3}$
74) Jason constructed two cylinders using solid metal washers. The cylinders have the same height, but one of the cylinders is slanted as shown.

Which statement is true about Jason's cylinders?
A. The cylinders have different volumes because they have different radii.
B. The cylinders have different volumes because they have different surface areas.
C. The cylinders have the same volumes because they are the same height.
D. The cylinders have the same volume because they have the same cross-sectional area at every plane parallel to the bases.
76) A square pyramid is packaged inside a box.

5 inches
The space inside the box around the pyramid is then filled with protective foam. About how many cubic inches of foam is needed to fill the space around the pyramid?
A. 8 cubic inches
B. 41 cubic inches
C. 83 cubic inches
D. 125 cubic inches
75) Find the difference in the volume of the two spheres below.

A. 972π
B. 684π
C. 180π
D. 324π
77) A company needs to package this bell in a rectangular box.

What are the smallest dimensions (length, width, and height) the rectangular box can have so that the lid of the box can also close?
A. 6 inches long, 6 inches wide, and 6 inches high
B. 6 inches long, 6 inches wide, and 8 inches high
C. 8 inches long, 8 inches wide, and 8 inches high
D. 8 inches long, 8 inches wide and 6 inches high
78) A construction company is preparing 10 acres of land for a new housing community. The land contains large rocks that need to be removed. A machine removes 10 rocks from 360 square feet of land.

1 acres = 43,560 square feet

How many rocks need to be removed from the 10 acres of land before the new housing community can be built?
A. 360 rocks
B. 1,210 rocks
C. 12,100 rocks
D. 435,600 rocks
80) Constructed Response

A sandcastle mold is in the shape of a cylinder with a diameter of 6 inches and a height of 8 inches. To the nearest cubic inch, how much sand will fit in the sandcastle mold? Explain how you determined your answer. In your explanation, use the word pi instead of the symbol π. Write your answer below.
79) Joe counts 250 peach trees on 25% of the land he owns. He determined that there are 10 trees for every 1,000 square feet of land. About how many acres of land does Joe own?

1 acre $=43,560$ square feet

A. 2.3 acres
B. 10 acres
C. 43.56 acres
D. 2,500 acres
81)

Constructed Response

A pyramid and rectangular prism have congruent bases and equal heights. Write a statement comparing the volume of the figures and explain your reasoning. Write your answer below.

WHAT YOU NEED TO KNOW

 $-2 \rightarrow \frac{1}{2}$), replace ' m ', ' x ', and ' y ' to solve for ' b ' to create a new linear equation
\square Midpoint: $\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$
\square Partitioning: $\left(x_{1}+\frac{a}{a+b}\left(x_{2}-x_{1}\right), y_{1}+\frac{a}{a+b}\left(y_{2}-y_{1}\right)\right)$, MAKE SURE TO PAY ATTENTION TO WHAT POINT YOU ARE COMING FROM!
\square Perimeter and Area: Use distance formula
\square Conic Circles Properties: $(x-h)^{2}+(y-k)^{2}=r^{2}$, center. (h, k), and radius $=\mathrm{r}$
\square Creating Conic Circle Equations from different scenarios: Center \& radius, graph, general form (completing the square)

Practice Problems

82) Given the points $\mathrm{P}(2,-1)$ and $\mathrm{Q}(-9,-6)$, what are the coordinates of the point on the directed line segment $\overline{P Q}$ that partitions $\overline{P Q}$ in the ratio $\frac{3}{2}$?
A. $\left(-\frac{23}{5},-4\right)$
B. $\left(-\frac{12}{5},-3\right)$
C. $\left(\frac{5}{3}, \frac{8}{3}\right)$
D. $\left(-\frac{5}{3},-\frac{8}{3}\right)$

Given the points $A(-1,2)$ and $B(7,8)$, find the coordinate of the point P on directed line segment $\overline{A B}$ that partitions $\overline{A B}$ in the ratio 1:3.
83) What is the equation of a line that is perpendicular to $y=\frac{1}{2} x-6$ and passes through the point $(6,4)$?
A. $y=-\frac{1}{2} x+1$
B. $y=-\frac{1}{2} x+7$
C. $y=-2 x-8$
D. $y=-2 x+16$
85)

Constructed Response

Find the area of rectangle $A B C D$ with vertices $A(-3,0), B(3,2)$, $C(4,-1)$, and $D(-2,-3)$.
86) An equation of a line a is $y=-\frac{1}{2} x-2$.

Which is an equation of the line that is perpendicular to line a and passes through the point $(-4,0)$?
A. $y=-\frac{1}{2} x+2$
B. $y=-\frac{1}{2} x+8$
C. $y=2 x-2$
D. $y=2 x+8$
87) What is the equation of a circle that has a center $(-6,2)$ and radius of $\sqrt{106}$?
A. $(x-6)^{2}+(y+2)^{2}=\sqrt{106}$
B. $(x-6)^{2}+(y+2)^{2}=106$
C. $(x+6)^{2}+(y-2)^{2}=\sqrt{106}$
D. $(x+6)^{2}+(y-2)^{2}=106$
88) Which of the following is the correct equation for the circle shown below?

A. $(x-1)^{2}+(y+2)^{2}=49$
B. $(x+1)^{2}+(y-2)^{2}=49$
C. $(x-1)^{2}+(y+2)^{2}=7$
D. $(x+1)^{2}+(y-2)^{2}=7$
89) A manufacturer is designing a two-wheeled cart that can maneuver through tight spaces. On one test model, the wheel placement (center) and radius is modeled by the equation $(x+2)^{2}+(y-1)^{2}=4$. What is the graph that shows the position and radius of the wheels?
a.

b.

c.

d.

90) Which point is NOT on a circle with a center of $(0,0)$ and a radius of 10 ?
A. $(0,5)$
B. $(10,0)$
C. $(0,-10)$
D. $(-8,6)$
92) What is the center of the circle given by the equation $x^{2}+y^{2}-10 x-11=0$?
A. $(5,0)$
B. $(0,5)$
C. $(-5,0)$
D. $(0,-5)$
94) Study this equation of a circle: $x^{2}-6 x+y^{2}+2 y+6=0$

Which of these represents the center and radius of the circle?
A. center: $(3,-1)$, radius: 4
C. center: $(3,-1)$, radius: 2
B. center $(-3,1)$, radius: 4
D. center: $(-3,1)$, radius: 2
A. $(-6,5)$
B. $(-1,6)$
C. $(1,6)$
D. $(6,-5)$
91) Which point is on a circle with a center of $(3,-9)$ and a radius of 5 ?
93) The circle shown below is centered at the origin and contains the point ($-4,-2$).

Which of the following is closest to the length of the diameter of the circle?
A. 13.41
B. 11.66
C. 8.94
D. 4.47
95) Which is an equation for the circle with a center at $(-2,3)$ and a radius of 3 ?
A. $x^{2}+y^{2}+4 x-6 y+22=0$
B. $2 x^{2}+2 y^{2}+3 x-3 y+4=0$
C. $x^{2}+y^{2}+4 x-6 y+4=0$
D. $3 x^{2}+3 y^{2}+4 x-6 y+4=0$

WHAT YOU NEED TO KNOW

\square Sample Space: All possible outcomes (rolling a die - \{1, 2, 3, 4, 5, 6\}; flipping a coin - $\{$ Heads, Tails $\}$)

- Total Possible Outcomes: \# of possible outcomes multiplied from ALL possible scenarios
\square Simple probability: $\frac{\text { wanted outcomes }}{\text { all outcomes }}$
\square Set Notation: Union (U) - OR, Intersection (n) - AND, Complement(') - NOT
\square 'AND' events: $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B})$, independent events (with replacement - denominator doesn't change), dependent events (without replacement - denominator changes)
$\square \quad$ 'OR' events: $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B})$ (if needed), mutually exclusive - no overlapping outcomes (no subtraction needed), inclusive overlapping outcomes (subtraction needed since the events have something in common), REMEMBER: you must subtract also if there are multiple sample spaces (flipping a coin and rolling a die)
\square Conditional events: Based on a condition, $P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$, Event B is ALREADY happened
\square Two-Way Frequency Tables: Pay attention to wording and the correct totals, relative frequency \rightarrow percentage

96) For which set of probabilities would events A and B be independent?
A. $P(A)=0.25 ; P(B)=0.25 ; P(A$ and $B)=0.5$
B. $P(A)=0.08 ; P(B)=0.4 ; P(A$ and $B)=0.12$
C. $P(A)=0.16 ; P(B)=0.24 ; P(A$ and $B)=0.32$
D. $P(A)=0.3 ; P(B)=0.15 ; P(A$ and $B)=0.045$
97) Each letter of the alphabet is written on separate cards in red ink. The cards are placed in a container. Each letter of the alphabet is also written on separate cards in black ink. The cards are placed in the same container. What is the probability that a card randomly selected from the container has a letter written in black ink or the letter is A or Z ?
A. $\frac{1}{2}$
B. $\frac{7}{13}$
C. $\frac{15}{26}$
D. $\frac{8}{13}$

Practice Problems

97) Bianca spins two spinners that have four equal sections numbered 1 through 4. If she spins a 4 on at least one spin, what is the probability that the sum of her two spins is an odd number?
A. $\frac{1}{4}$
B. $\frac{7}{16}$
C. $\frac{4}{7}$
D. $\frac{11}{16}$
98) Mrs. Klein surveyed 240 men and 285 women about their vehicles. Of those surveyed, 155 men and 70 women said they own a red vehicle. If a person is chosen at random from those surveyed, what is the probability of choosing a woman or a person who does NOT own a red vehicle?
A. $\frac{14}{57}$
B. $\frac{71}{105}$
C. $\frac{74}{105}$
D. $\frac{88}{105}$
99) In a particular state, the first character on a license plate is always a letter. The last character is always a digit from 0 to 9.

If V represents the set of all license plates beginning with a vowel, and O represents the set of all license plates that end with an odd number, which license plate belongs to the set V and O^{\prime} ?
A.
549 [
c. $\sqrt[A]{1} 0(1)$
B. 464645

102) A random survey was conducted about gender and hair color. This table records the data.

Hair Color				
	Brown	Blonde	Red	Total
Male	548	876	82	1,506
Female	612	716	66	1,394
Total	1,160	1,592	148	2,900

What is the probability that a randomly selected person has blonde hair, given that the person selected is a male?
A. 0.51
B. 0.55
C. 0.58
D. 0.63
101) When rolling a fair, six-sided number cube, what is the probability of rolling an even number or a number less than 3?
A. $\frac{5}{6}$
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$
103) Assume that the following events are independent:

- The probability that a high school senior will go to college is 0.72 .
- The probability that a high school senior will go to college and live on campus is 0.46 .

What is the probability that a high school senior will live on campus, given that the person will go to college?
A. 0.26
B. 0.33
C. 0.57
D. 0.64

