Warm-up:

- 1. Put your phones in the pouches/away.
- 2. Complete your Warm-Up

Jul 31-9:37 PM

1. What's the difference between an angle bisector and a segment bisector?

2. Write the logical way of creating a peanut butter and jelly sandwich.

What does it mean to prove something?

To provide or demonstrate sufficient evidence that something is TRUE!

Basically, to win an argument!

Why do a proof in Geometry?

To show our understanding of Geometry topics and how they all connect!

3 RULES of Uno!

- 1. You can play a card of the same color.
- 2. You can play a card of the same number.
- 3. You can play a WILD card at any time in order to change the color.

The first card is the GIVEN card

How could we get to

Two-Column Proof

Statements	Reasons
Progression of our argument laid out	WHY CAN WE SAY THE STATEMENTS?
STEP by STEP	(These can be postulates, theorems,
These statements are things that MUST be	or explanations) Why are the
true!	statements TRUE?

Feb 12-7:51 AM

Flowchart for a Good Proof:

- Should always be one of your GIVEN statements
- Use your knowledge to build off of this

Continue using LOGICAL conclusions

 Look for OBVIOUS things (shared sides, linear pairs, vertical angles, etc.)

END

 Your "prove" should be your <u>LAST</u> statement!

Formal 2-Column Proof

Given: Blue 6

Prove: Yellow Reverse

Statements:

(What Card to Play)

- 1) Blue 6
- a) WILD 3) Yellow Reverse

Reasons:

(Why can we play this card?)

1) Given

2) Change color (yellow) 3) Same color

Formal 2-Column Proof

Given: Blue 5

Prove: Green 6

Statements:

(What Card to Play)

1) Blue 5

2) Blue 1

Reasons:

(Why can we play this card?)

1) Given

SAME COLOT

UNO Proofs

Use the "given" and "prove" statements to help build your two-column "proofs"

#3 - NO RED 8 #6 - NO BLUE 5

What am I learning today?

Learning Objective 2B.1

How to use two-column proofs.

What will I do to show that I have learned it?

I can...Use properties, theorems, and mathematical definitions to help complete "statements" and "reasons" in a proof

Jul 31-6:18 PM

Use SIMPLE PROPERTIES AND PROPERTIES OF EQUALITY!		
Addition Property of Equality	Subtraction Property of Equality	
Multiplication Property of Equality	Division Property of Equality	

Symmetric Property If a = b, then b = a

<u>Given</u>: 2x + 3 = 4x - 7

Prove: x = 5

Statements

1.
$$2x+3=4x-7$$

2.
$$3 = 2x - 7$$

3.
$$10 = 2x$$

4.
$$5 = X$$

Reasons

- 1. Given
- 2. Sub. Prop. of Eq.
- 3. Add. Prop. of Eq.
- 4. Div. Prop. of Eg.
- 5. Sym. Prop.

What can we assume about the following

diagrams?

Given: M is the midpoint of AB

Conclusion: $\Delta M \cong MB$

Why? Det. of midpoint

Given: RObisects Angle FRG

Conclusion: ZFROZZORG

Why? Def. of bisector

Given: Angle DAY and Angle YAK are a linear

pair

Conclusion: ZDAY + ZYAK = 180°

Why? Def. of linear pair

Given: $\angle GFH \cong \angle IFH$

Prove: $m \angle GFH \stackrel{\star}{=} m \angle IFH$

Why? Def. of congruency

Given: HF = PM

Prove: $HF \stackrel{\checkmark}{\cong} PM$

Why? Def. of congruency

<u>Given</u>: ∠GHF is a right angle.

Prove: $m \angle GHF = 90^{\circ}$

Statements

1. LGHF is a right L 1. Given

2. m/GHF=90°

Reasons

2. Des. of right angle

Feb 12-7:54 AM

Given: PN⊥AB

Prove: $\angle ANP$ and $\angle BNP$ are right angles

Statements

- 1. PMLLAB
- 2. LANP & LBNP are right angles

Reasons

- 1. Given
- 2. Def. of perpendicular

Given: HF bisects $\angle GFI$

Prove: $m \angle GFH = m \angle IFH$

Statements

1. HF bisects CGF7 1. Given

Reasons

- 2. ∠GFH ≅ ∠IFH
 2. Def. of bisector
 3. M∠GFH= m∠IFH
 3. Def. of congruency

Feb 12-9:05 AM

Use EXPLANTIONS!

Given: $\angle GHF$ and $\angle GHJ$ are right angles

Prove: $\angle GHF \cong \angle GHJ$

Statements

1.

2.

Reasons

1.

2.

Reasons

Given: $\angle 4$ and $\angle 2$ are vertical angles.

Prove: $\angle 4 \cong \angle 2$

Statements

1. 1.

2. 2.

Feb 12-7:55 AM

Use OTHER PROPERTIES/THEOREMS/POSTULATES! Substitution Property Replaces a number or a piece of an expression Transitive Property If a = b and b = c, then a = cSegment Addition Postulate Two smaller segments added together creates a bigger segment Angle Addition Postulate Two smaller adjacent angles added together creates a bigger angle Given: $\angle 4 \cong \angle 2$ $\angle 2 \cong \angle 5$ and Prove: $\angle 4 \cong \angle 5$ **Statements** Reasons 1. 1. 2. 2. 3. 3.

Classwork:
Complete the classwork with cutting and gluing all of the statements and reasons for each "baby" proof
HW: Drawing conclusions worksheet