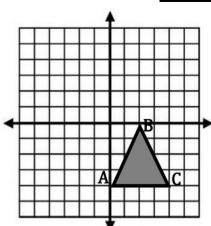
Topic: Dilations/Sca	le Factor <u>Date</u> :
Learning Objective	e(s) :
Main Ideas/ Questions	Notes Dilation – A transformation that changes the of a figure.
Dilation Characteristics	• Dilations can result in a or figure than the pre-image.
	• ***Since dilations do not maintain the same distance/length between
	the points from the pre-image to the image, a dilation is NOT an***
	4 qualities preserved during a dilation transformation:
	✓ measures
	✓ Corresponding sides are
	✓ Pre-image and image coordinates are
	(on the same line) from the center of dilation
How to Create a Dilation	• Dilations need two things: 1.
	2.
	**We often use the for the center of dilation; when this
	happens simply multiply the scale factor with the of
	each vertex**
Types of Dilations	An image that is bigger than the pre-image is called an
	• This means the scale factor was than 1.
Example of Enlargement	Find the image E'H'F'G' after a
	dilation centered at the origin with
	a scale factor of 2.
	10

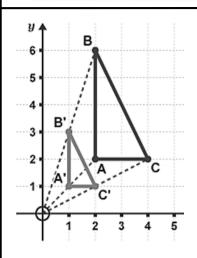

Main Ideas/ **Questions**

Types of Dilations

Example of Reduction

Notes

- An image that is **smaller** than the pre-image is called a
- This means the **scale factor** was _____ than 1.



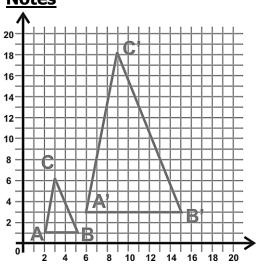
Find the image A'B'C' after a dilation centered at the origin with a scale factor of 1/2.

Special Type

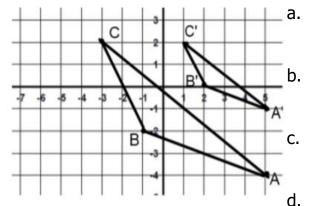
- An image that is **the same size** as the pre-image is called a
 - This means the **scale factor** was _____ to 1.

Finding the Center of Dilation

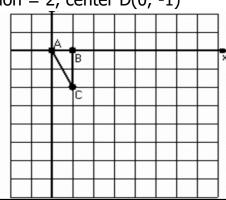
Connect the corresponding vertices with lines and find the intersection point!


M'

- Find the center of 1. dilation.
- 2. Calculate the scale factor.


Main Ideas/ **Questions**

Examples


- Find the center of dilation. a.
- b. Calculate the scale factor.
- Describe the type of dilation. C.
- d. Create a rule for the dilation.

- Find the center of dilation.
 - Calculate the scale factor.
 - Describe the type of dilation.
 - Create a rule for the dilation.

3. Graph the image using the dilation and center of dilation.

Dilation = 2, center D(0, -1)

4. Complete the coordinates of the image after a dilation of scale factor k centered at the origin.

$$k = 3$$

Summary

Summarize the lesson in your own words with the help of the guided questions.

How does a dilation transform a figure? Why is a dilation not considered an isometry? How is a dilation rule written and applied?