
Topic:	Triangle	Proportionality	Theorem

Date:

Learning Objective(s) :

	Notes
uestions Triangle	Triangle Proportionality Theorem
oportionality	If a line is to one side of a triangle and it
Theorem	the other two sides, then it divides the sides into
	segments of lengths
	If $\overline{BE} \parallel \overline{CD}$, then $\frac{AB}{BC} = \frac{AE}{ED}$
Examples	If $\overline{RT} \parallel \overline{VU}$, $SV = 3$, $VR = 8$, and $UT = 12$. Find SU .
	T 12 V 3 S T 12 V 3 S T 12 V 3 S T 12 V 12 V S S T 12 V S S S T S S T S S S T S
	If $\overline{AC} \parallel \overline{XY}$, $AX = 4$, $XB = 10.5$, and $CB = 21.75$. Find BY .
	If $\overline{TU} \parallel \overline{QS}$, $QR = 10$, $QT = 2$, $SR = x$, and $SU = 4$. Solve for x .
	Q T U S

Topic: Triangle Proportionality Theorem

